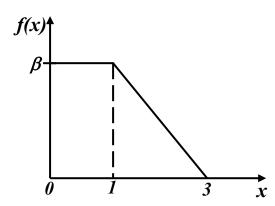
APPLIED MATHEMATICS(P425/2)

1. A discrete **r·v X** takes the values **1, 2** or **3** and its cumulative distribution function is as follows:


$$F(x) = \frac{(x + k)^2}{16}$$
 , $x = 1, 2, 3$

Find the:

- (i) value of k where k > 0.
- (ii) probability distribution of X.
- (iii) mean and variance of X.
- 2. $A r \cdot v X$ has the following $p \cdot d \cdot f$

$$f(x) = \begin{cases} \beta x & , 1 \le x \le 3 \\ \lambda(4-x) & , 3 < x \le 4 \\ 0 & , otherwise \end{cases}$$

- (a) Show that $\lambda = 3\beta$
- **(b)** Find:
- (i) the values of β and λ
- (ii) the mean of X
- (iii) P(1.5 < X < 3.5/X < 2)
- (iv) the upper quartile of X
- 3. The $p \cdot d \cdot f$ of a continuous $r \cdot v X$ is distributed as follows:

Find:

- (i) the value of β
- (ii) the equations of the $p \cdot d \cdot f$, hence or otherwise find the median of X

- 4. The size of an angle x was measured with an error Δx . Derive an expression for the maximum relative error in $x\cos x$. Hence if $x = 60^\circ$ and $\Delta x = 3^\circ$, find the limits within which the exact value of $x\cos x$ lies.
- 5. Use the trapezium rule with **n** ordinates to show that $\int_{0}^{1} x^{2} dx \approx \frac{1}{3} + \frac{1}{6(n-1)^{2}}$
- 6. A particle is projected from a point O, 14.7m above a horizontal ground, with a speed of $21ms^{-1}$ at an elevation of 30° below the horizontal. Find the :
 - *a)* The time of flight.
 - b) The range on the ground.
- 7. A particle is projected with a speed of 36ms⁻¹ at an angle of 40⁰ to the horizontal from a point 0.5m above the level ground. It just clears a wall which is 70 metres on the horizontal plane from a point of projection. Find the;
 - a) The time taken for particle to reach the wall.
 - b) The height of the wall.
 - 8. A girl thrown a stone from a height of 1.5m above the ground with speed of $10ms^{-1}$ and hits a bottle standing on a wall 4m high and 5m from her. Take $g = 10ms^{-1}$. Show that if α is the angle of projection of the stone as it leaves her hand then; $1.25tan^2\alpha 5tan\alpha + 3.75 = 0$